Hidden Conditional Random Fields with M-to-N Alignments for Grapheme-to-Phoneme Conversion
نویسندگان
چکیده
Conditional Random Fields have been successfully applied to a number of NLP tasks like concept tagging, named entity tagging, or grapheme-to-phoneme conversion. When no alignment between source and target side is provided with the training data, it is challenging to build a CRF system with state-of-the-art performance. In this work, we present an approach incorporating an Mto-N alignment as a hidden variable within a transducerbased implementation of CRFs. Including integrated estimation of transition penalties, it was possible to train a state-of-the-art hidden CRF system in reasonable time for an English grapheme-to-phoneme conversion task without using an external model to provide the alignment.
منابع مشابه
Structure learning in hidden conditional random fields for grapheme-to-phoneme conversion
Accurate grapheme-to-phoneme (g2p) conversion is needed for several speech processing applications, such as automatic speech synthesis and recognition. For some languages, notably English, improvements of g2p systems are very slow, due to the intricacy of the associations between letter and sounds. In recent years, several improvements have been obtained either by using variable-length associat...
متن کاملImproving LVCSR with hidden conditional random fields for grapheme-to-phoneme conversion
In virtually every state-of-the-art large vocabulary continuous speech recognition (LVCSR) system, grapheme-to-phoneme (G2P) conversion is applied to generalize beyond a fixed set of words given by a background lexicon. The overall performance of the G2P system has a strong effect on the recognition quality. Typically, generative models based on joint-n-grams are used, although some discriminat...
متن کاملMonotone string-to-string translation for NLU and ASR tasks
Monotone string-to-string translation problems have to be tackled as part of almost all stateof-the-art natural language understanding and large vocabulary continuous speech recognition systems. In this work, two such tasks will be investigated in detail and improved using conditional random fields, namely concept tagging and grapheme-to-phoneme conversion. Concept tagging is usually one of the...
متن کاملConditional Random Fields for the Tunisian Dialect Grapheme-to-Phoneme Conversion
Conditional Random Fields (CRFs) represent an effective approach for monotone string-to-string translation tasks. In this work, we apply the CRF model to perform graphemeto-phoneme (G2P) conversion for the Tunisian Dialect. This choice is motivated by the fact that CRFs give a long term prediction and assume relaxed state independence conditions compared to HMMs [7]. The CRF model needs to be t...
متن کاملA Hybrid Approach to Grapheme-Phoneme Conversion
We present a simple and effective approach to the task of grapheme-tophoneme conversion based on a set of manually edited grapheme-phoneme mappings which drives not only the alignment of words and corresponding pronunciations, but also the segmentation of words during model training and application, respectively. The actual conversion is performed with the help of a conditional random field mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012